Faroe Islands Towards 100% Renewable Energy

October 2022

100bv

Terji Nielsen Head of R&D department Dipl.Ing.E.E. / MBA Renewables

Agenda

□ Facts about Faroe Islands and the Faroese Power system

□ Projected consumption and some renewable energy projects

□ Tidal energy – a potential baseload generation

□ Long- and short-term energy storage

Developing a tangible 2030 RoadMap (PhD research project)

Ensuring grid stability in a 100% inverter-based power system

Facts

- 18 islands (17 are populated)
- 54.000 inhabitants
- Area of 1.399 km² / 260.995 km² (EEZ)
- Language: Faroese
 - Derived from the Norsemen, settled the Faroe Islands in the viking age.

Renewable energy targets:
100% green electricity by 2030
Carbon neutrality by 2050

Faroe Islands

Faroe Islands - facts

Norðoyatunnlin

Vágatunnlin

Eysturoyartunnlin 11,2 km

Total cost: 360 M€ Sandoyartunnlin 10,8 km

Faroe Islands – subsea tunnels

Average wind speed: > 10m/s

Average sun hours: ~ 1000 hrs/year

Peak tidal velocities: ~ 3.5 m/s Precipitation: > 1300 mm/year

SEV

Resource complementarity

- General company facts
 - Non-profit, founded 1st October 1946
 - 100 % owned by all Faroese municipalities
 - Vertically Integrated Company
 - Joint and several price structure
 - Monopoly on grid operation (transmission & distribution)

17 PARTNERSHIPS

*

SEV

• "De facto" monopoly on production (98%)

Electrical Power Company SEV

• Key figures and characteristics

- SEV is owner and TSO/DSO
- Average/Peak demand 2021: 42/62 MW
- Low load: 25-30 MW
- Annual generation: 424 GWh (2021)
- 7 isolated grids
- Electrically isolated from neighboring countries
- Installed capacities:
 - Fossil fueled power plants: 102 MW
 - Hydro power: 40 MW
 - Wind power:
 - Main area: 43 MW (+ additionally 18 MW in Q4/2022)
 - Suðuroy: 6.3 MW
 - PV: ~ 0,5 MW

Main drivers of grid investments

- Integration of RES
 - Transmission lines, substations, ancillary services (synchronous compensators, batteries etc.)
- Large industrial consumers
 - Estimated increase in industrial loads 2022-2024: 26.5 MW
- Continuous reinforcement due to increased load and electrification

Grid investments 2021 – 2030: 150 M£

Renewable energy projects

Hoyvíkshagi 2022 (25 MW)

Porkerishagi 2020 (6,3 MW)

Junkarahagi (18 MW)

Glyvrafjall (24 MW)

Eiði (18 MW)

Klivaløkshagi (21 MW)

Vestfelli (2 x 18 MW)

Hydro power

Tidal energy

Potential base load generation

Minesto

Maximum tidal current speed [m/s]

Tidal energy

MINESTO'S DEEP GREEN: A GAME-CHANGING RENEWABLE ENERGY TECHNOLOGY

The power of speed in water

Sea water is 832 times heavier than air Substantially higher kinetic energy content

Power is proportional to the speed cubed (**v**³) The wing multiplies the stream flow through the turbine

Cost-effective exploitation of a so far untapped energy source Commercially viable electricity generation with small and lightweight systems

Potential for Tidal energy build out in Faroe Islands

Energy storage

For balancing the power system

- **Batteries** for short-term storage
 - Seconds, minutes, hours

• Pumped hydro for long-term storage

• Hours, days, weeks

SEV

Short- and long term storage

1 Nor Market Mark

Pumped storage project in Vestmanna

Developing a RoadMap

According to PhD research project Helma Maria Tróndheim, PhD

- Policy constraints:
 - Linear decrease in CO₂ emissions to ensure 100% renewables in 2030
- System model:
 - Existing and committed capacities have been defined
 - Demand projection includes electrification of heating and transport
 - Costs are based on the O&M of the system, and fuel cost projection is from the Danish Energy Agency
- Investment options:
 - Energy potential based on local resources
 - Maximum capacities at locations have been defined
 - Costs are based on previous projects and catalogues (Danish Energy Agency)

- Dispatch and investments are optimised simultaneously
- The dispatch is optimised per hour, plant and connection
- Investments are optimised annually for each location and technology type

Optimisation

Multiple scenarios and sensitivity analysis

1 Northan X

Generation capacities

Noteworthy optimisation results

- Renewables are economically favourable up to 86-87%
- Going from 96% in 2028 to 100% in 2030 doubles the need for storage
- The results are not highly sensitive to the investment and fuel costs
- Tidal energy can have a major impact on the future power system, reducing the generation and storage capacities by 18% and 75% respectively

- Based on main scenario
- Investments should be made in realistic project sizes
- The learning curve of the operators is considered
- Practicality has been considered
- Wind farm example

RoadMap Generation

- The RoadMap is simulated in Balmorel as committed capacities
- The production in 2030 should be 100% renewable
- The economics of the RoadMap should be similar to the main optimised scenario

Renewable and Stable Grid

Grid Stability

Hitachi Energy

e-mesh™ PowerStore™

Batteries for fast frequency response in Suðuroy

100% inverter-based generation

Example of Grid Disturbance (outage of hydro turbine)

5

Thank you

100by 2030

Helma Maria Tróndheim, R&D department, PhD

0

